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Abstract. The standard representation of angular momentum on Bargmann’s Hilbert space of
analytic functions is extended such that domains of operators include non-analytic functions,
which are square integrable. Generalized eigenfunctions of angular momentum are proposed,
which contain arbitrary complex constants. The eigenfunctions are shown to satisfy a basic
requirement which follows from group theory.

Already in early treatises on group theory and quantum mechanics [1], one has
encountered the suggestion of representing operators for angular momentum on the basis
of two complex variablesξ andη. The idea can be developed in a mathematically sound
manner [2] by situating oneself in a Hilbert space of analytic functions [3]. The ensuing
representation of angular momentum forms part of common knowledge [4], and has been
employed in various problems. Examples are given in [2, 5–8]. One can establish a
correspondence with the boson calculus for angular momentum [9] via the identity

ξmηn = 〈0|ambn exp(ξa†) exp(ηb†)|0〉 (1)

wherem, n are non-negative integers, and|0〉 denotes a vacuum state. The ladder operators
a, a† and b, b† satisfy boson commutation relations. The commutators [a, b] and [a, b†]
equal zero.

For some applications, non-analytic functions cannot be excluded from the domain of
the operators for angular momentum [10]. The same is true if one wishes to investigate
certain group-theoretical properties of the eigenfunctions for angular momentum [11]. In
these cases, the representation must be constructed anew, allowing now for forms that
depend on the four independent complex variablesξ, η, ξ̄ , η̄. This is precisely what we
shall do in the present note. As a Hilbert space we shall chooseL2(C2), the space of
square-integrable functions onC2. The extended representation of angular momentum will
give rise to a discussion of several new points.

Within the framework of non-relativistic quantum mechanics, the eigenvalue problem for
angular momentum can be treated as follows [12]: one assumes the existence of three self-
adjoint operators{Jx, Jy, Jz} which act on a Hilbert spaceH, and satisfy the commutation
relations

[Jk, Jl ] = i
∑
m

εklmJm (2)
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where εklm denotes the Levi-Civita symbol. Subsequently, one demonstrates [13] that
operatorsJk andJ 2 ≡ ∑l J

2
l commute, and possess a countable number of simultaneous

eigenstates{|jm〉}, with

Jz|jm〉 = m|jm〉 J 2|jm〉 = j (j + 1)|jm〉 (3)

and

〈j ′m′|jm〉 = δj ′j δm′m. (4)

The usual choicek = z has been made. Quantum numberj takes on the values
0, 1

2, 1, 3
2, 2, . . ., and for eachj , quantum numberm runs from−j to +j with unit steps.

Finally, one demonstrates that the linear combinations

J+ = Jx + iJy J− = Jx − iJy (5)

act as ladder operators according to

J±|jm〉 = [(j ∓m)(j ±m+ 1)]1/2|jm± 1〉. (6)

Together with (3), the above result implies that states{|jm〉 : j fixed} span a(2j + 1)-
dimensional subspace ofH, which is invariant under the action of operators{Jx, Jy, Jz}.

As a realization of the abstract spaceH, we choose a Hilbert space of functionsH.
We seek to represent each componentJk of the angular-momentum operator by a complex
differential form Jk that acts onH. The new operators will be obtained by applying
Stone’s theorem [14] to a one-parameter group defined onH. In constructing the latter,
we set quantum numberj equal to its lowest non-trivial value, given byj = 1

2. One then
has〈 12m′|Jk| 12m〉 = 1

2σk, where{σx, σy, σz} are the Pauli matrices. These are generators of
SU(2), in view of the identity

U(ê, φ) ≡ exp(− 1
2iφê · σ) = cos( 1

2φ)1− i sin( 1
2φ)ê · σ (7)

whereφ denotes a real parameter, andê a unit vector inR3.
Matrices{U(ê, φ)} make up a unitary one-parameter group onC2, with generator12ê·σ.

We are thus led to consider complex-valued functions onC2, and introduce the operator

PUf (ξ, η, ξ̄ , η̄) = f (ξ ′, η′, ξ̄ ′, η̄′) (ξ ′, η′) = (ξ, η)U. (8)

This definition complies with literature conventions†. Note that a complex number contains
two degrees of freedom, soξ and its complex conjugatēξ may be treated as independent
variables. SpaceH is taken to be the Hilbert spaceL2(C2) of square-integrable functions
on C2, so the scalar product between two functions is given by

〈f, g〉 =
∫ ∫

d2ξ d2ηf̄ (ξ, η, ξ̄ , η̄)g(ξ, η, ξ̄ , η̄). (9)

The integrals must be evaluated on the basis of the prescription
∫

d2ξ = ∫ ∫
dx dy, with

ξ = x + iy.
From definitions (7) and (8) we infer that the set{PU : φ ∈ R} forms a one-parameter

group onL2(C2). The setS of functions of rapid decrease onC2 is dense inL2(C2).
By employing the dominated-convergence theorem‡, one proves that for eachf ∈ S the
functionPUf converges tof in theL2 norm as parameterφ tends to zero. Therefore, the
one-parameter group{PU } is strongly continuous. It is also unitary, because integral (9) is
invariant under any special unitary transformation of vector(ξ, η). We recall that vector
(Reξ, Im ξ,Reη, Im η)T transforms with SO(4), if vector(ξ, η)T transforms with SU(2).

† See [11, p 106].
‡ See for instance [14, section I.3].



Representation of angular momentum 4441

We are now in a position to apply Stone’s theorem, so that we may write

PUf (ξ, η, ξ̄ , η̄) = exp(−iφK)f (ξ, η, ξ̄ , η̄). (10)

For eachf ∈ S, the form iφ−1(PUf − f ) converges toKf in the L2 norm asφ goes
to zero. Employing (8) as well as the dominated-convergence theorem, we find for the
generator

Kf = ê · J f (11)

with

Jx = 1

2

[
η
∂

∂ξ
+ ξ ∂

∂η
− η̄ ∂

∂ξ̄
− ξ̄ ∂

∂η̄

]
Jy = i

2

[
η
∂

∂ξ
− ξ ∂

∂η
+ η̄ ∂

∂ξ̄
− ξ̄ ∂

∂η̄

]
Jz = 1

2

[
ξ
∂

∂ξ
− η ∂

∂η
− ξ̄ ∂

∂ξ̄
+ η̄ ∂

∂η̄

]
.

(12)

In terms of real variablesx andy, with ξ = x + iy, the partial derivatives with respect to
ξ and ξ̄ can be expressed as

∂

∂ξ
= 1

2

(
∂

∂x
− i

∂

∂y

)
∂

∂ξ̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (13)

Now relations∂ξ/∂ξ = 1 and ∂ξ/∂ξ̄ = 0 can be directly verified. Moreover, the self-
adjointness of operatorK can be made explicit, because eachJk is seen to be a linear
combination with real coefficients of operators of the form iu∂/∂v, whereu andv stand for
any two variables of the set{Reξ, Im ξ,Reη, Im η}†.

By construction, operators (12) obey the same commutation relations as the Pauli
matrices. Therefore, we have found a representation of angular momentum in terms of
operators that are self-adjoint on the Hilbert spaceL2(C2). In literature [7, 8] representations
have been proposed which are similar to (12). To be specific, the choicez11 = ξ, z12 =
η, z21 = −η̄, z22 = ξ̄ in [7, section 5] also provides us with operators (12). The same goes‡
for the choiceξ1 = ζ1 = ξ andξ2 = ζ2 = η in equation (33) of [8]. Upon discarding partial
derivatives with respect tōξ and η̄, operators (12) assume their standard form [2, 4–6].
However, rather than onL2(C2), they are now self-adjoint on the Hilbert space of analytic
functions [2]. For some physical applications this may be a drawback [10]. Below we list
some advantages and new features of the extended representation.

(1) One checks that operators (12) are invariant under the transformation

ξ ′ = aξ + bη̄ η′ = −bξ̄ + aη (14)

where a and b denote arbitrary complex numbers. In case the sum|a|2 + |b|2 equals
unity, (14) corresponds to a special unitary transformation of vector(ξ, η̄)T. The standard
counterpart of (12) is not invariant under transformation (14), unlessb is chosen to be zero.

(2) We set out to find elements{vjm} of S which represent the abstract states{|jm〉}.
To that end, we need to represent ladder operatorsJ+ andJ− on the basis of (12). They
come out as

J+ = ξ ∂
∂η
− η̄ ∂

∂ξ̄
J− = η ∂

∂ξ
− ξ̄ ∂

∂η̄
. (15)

† The self-adjointness of these operators is discussed in [14, section VIII.5].
‡ One should still adapt a few coefficients. Note that relations (33) and (34) of [8] are not consistent with each
other.
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From (6) conditionsJ+|jj〉 = J−|j − j〉 = 0 are found, which can be satisfied by letting
|jj〉 → p1(ξ, η̄) and |j − j〉 → p2(ξ̄ , η).

For functionsp1 andp2 we choose polynomials. StatesJ 2j
+ |j − j〉 and |jj〉, as well

as statesJ 2j
− |jj〉 and |j − j〉 are linearly dependent, so powers higher than 2j may not

occur. In view of eigenvalue equations (3),p1 must be a homogeneous polynomial of order
2j . We actj −m times with operatorJ− on polynomialp1 =

∑2j
k=0 akξ

2j−kη̄k, with {ak}
complex numbers. After repeatedly using (6), we see that functions{vjm} can be cast into
the following form

vjm = Nj exp[−γj (|ξ |2+ |η|2)]
[(j +m)!(j −m)!] 1/2

j+m∑
k=0

j−m∑
l=0

c
(j)

k+l (−1)k
(
j +m
k

)(
j −m
l

)
ξ j+m−kηj−m−l ξ̄ l η̄k

(16)

whereNj andγj are real and positive constants. The exponential factor has been added so
as to ensure that functions{vjm} belong toS. Its presence does not affect the validity of
equations (3) and (6), because of the identity

Jk(|ξ |2+ |η|2) = 0 (17)

which is a consequence of (8), (10), and the unitarity of matrixU .
The complex numbers{c(j)n } are not subject to any conditions. Hence, the extended

representation (12) leaves us a lot of freedom in translating equations (3) and (6) into
functional language. Upon choosingc(j)n = δn,0 in (16), we recover the well known [2, 4–6]
monomials that are associated to the standard counterpart of (12).

We still have to examine the orthonormality of the set{vjm}, and compute the
normalization factors{Nj }. The scalar product (9) ofvjm and vj ′m′ can be elaborated
on the basis of the identity∫

d2ξ ξ̄mξn exp(−|ξ |2) = πn!δmn (18)

wheren,m denote non-negative integers. The two ensuing Kronecker symbols reduce the
number of summations to three, and make the scalar product identically zero in the case
m 6= m′. This brings us to

〈vj ′m′ , vjm〉 = δm′mπ
2(−1)j

′+jNj ′Nj
(γj ′ + γj )j ′+j+2

[
(j ′ +m)!(j ′ −m)!
(j +m)!(j −m)!

]1/2

×
j+m∑
k=0

j−m∑
l=0

(−1)l c̄(j
′)

j ′−j+k+lc
(j)

k+l

(
j +m
k

)(
j −m
l

)
F(j ′jm; kl). (19)

We have defined a factor

F(j ′jm; kl) =
j ′−m∑
n=0

(−1)n
(j +m+ n− k)!(j ′ −m+ k − n)!

n!(j +m+ n− k − l)!(j ′ −m− n)!(j ′ − j + k + l − n)! (20)

and assumed the inequalityj ′ > j , without loss of generality.
The above result calls for the use of the following well known [15] formulae

p∑
n=0

(−1)n+p
(
p

n

)
nq = p!δpq with q 6 p (21)

and p, q non-negative integers. In evaluating (20), the casesj + m 6 k + l 6 2j ,
j −m 6 k + l 6 j +m, and 06 k + l 6 j −m must be handled separately. In the third
caseF can be written as a sum of contributions of the form (21), withp = j ′ − j + k + l
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and 06 q 6 k + l. It follows thatF(j ′jm; kl) vanishes forj ′ > j , and equals(−1)l for
j ′ = j . The two other cases yield the same result. The r.h.s. of (19) can now be computed
with the help of the addition theorem

p∑
k=0

(
m

k

)(
n

p − k
)
=
(
m+ n
p

)
. (22)

We end up with

〈vj ′m′ , vjm〉 = δj ′j δm′m
π2N2

j

(2γj )2j+2

2j∑
n=0

|c(j)n |2
(

2j

n

)
. (23)

A comparison with (4) gives the normalization factors{Nj }.
It should be emphasized that the orthonormal set{vjm} spans a closed space, which is

a true subspace ofL2(C2). Indeed, with the help of identities similar to (18) and (21), one
demonstrates that the function of rapid decrease(

2

1+ γ0
− |ξ |2− |η|2

)
exp[−|ξ |2− |η|2] (24)

is orthogonal to the set{vjm}. The situation is the same as for the Schrödinger representation
of angular momentum, where the spherical harmonics{Ylm(r̂)} represent states{|jm〉} for
j = l = 0, 1, 2, . . .. Upon multiplying by a suitably chosen radial function, the spherical
harmonics are transformed into an orthonormal set on the Hilbert spaceL2(R3). This set
is, however, incomplete.

(3) Under the action of operators{PU } the functions{vjm : jfixed} transform amongst
each other. Therefore, they form the basis of a(2j + 1)-dimensional unitary representation
of SU(2). It is irreducible, because for each functionw that belongs to thej th eigenspace
of operatorJ 2, the set{PUw : U ∈ SU(2)} contains 2j + 1 linearly independent elements.
One can now prove [11] that the sum

sj (ξ, η, ξ̄ , η̄) =
+j∑

m=−j
|vjm(ξ, η, ξ̄ , η̄)|2 (25)

is invariant under operators{PU }.
To confirm the foregoing statement, we evaluate functionsj by substituting (16). After

making a few changes of summation index, identities (21) can be used again, with the
outcome

sj (ξ, η, ξ̄ , η̄) = (2γj )2j+2

π2(2j)!
(|ξ |2+ |η|2)2j exp[−2γj (|ξ |2+ |η|2)]. (26)

The normalization constantNj has been eliminated. On account of (17), one now arrives
at the satisfactory result

Jksj (ξ, η, ξ̄ , η̄) = 0 (27)

for k = x, y, z. Notice that only within the framework of the extended representation (12),
the invariance of functionsj can be discussed. The latter is not analytic, and, hence, does
not belong to Bargmann’s Hilbert space.

In conclusion, the eigenvalue problem for angular momentum has been formulated
and investigated on the Hilbert spaceL2(C2). For arbitrary quantum numberj , we have
proposed a set of eigenfunctions{vjm} that contains 2j + 1 free complex constants. As
an application, one might analyse the role of these in the derivation of special-function
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identities via coupling of angular momentum [16]. We have verified a group-theoretical
statement which states that the sum

∑+j
m=−j |vjm|2 is invariant under SU(2) operations.

Finally, we point out that one can also chooseL2(C3) as a Hilbert space, and thus
establish a representation in terms of the complex variablesξ, η, ζ , and their conjugates.
Starting from matrices〈1m′|Jk|1m〉, with k = x, y, z, one obtains

Jx = 1√
2

[
η
∂

∂ξ
+ (ξ + ζ ) ∂

∂η
+ η ∂

∂ζ
− η̄ ∂

∂ξ̄
− (ξ̄ + ζ̄ ) ∂

∂η̄
− η̄ ∂

∂ζ̄

]
Jy = i√

2

[
η
∂

∂ξ
− (ξ − ζ ) ∂

∂η
− η ∂

∂ζ
+ η̄ ∂

∂ξ̄
− (ξ̄ − ζ̄ ) ∂

∂η̄
− η̄ ∂

∂ζ̄

]
Jz =

[
ξ
∂

∂ξ
− ζ ∂

∂ζ
− ξ̄ ∂

∂ξ̄
+ ζ̄ ∂

∂ζ̄

]
.

(28)

The setS may serve as a domain of the above operators.
It is interesting to remark that the invariant sums{sj } are now of a more complicated

structure than before. Forj = 1, the three eigenfunctions ofJz andJ 2 can be taken asξp,
ηp, andζp, where factorp = π−3/2 exp[− 1

2(|ξ |2+|η|2+|ζ |2)] ensures normalization. Both
sum s1 and factorp contain the invariant|ξ |2 + |η|2 + |ζ |2. Since the five eigenfunctions
for j = 2 can be taken as 2−1/2ξ2p, ξηp, 3−1/2(η2 + ξζ )p, ηζp, and 2−1/2ζ 2p, sum s2
contains a new invariant, defined by the relation

Jk[ 1
2|ξ |4+ |ξ |2|η|2+ 1

3|η2+ ξζ |2+ |η|2|ζ |2+ 1
2|ζ |4] = 0 (29)

with k = x, y, z. This example illustrates that by studying representations of angular
momentum on the spaceL2(C2j+1), one might discover new and useful results.
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